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Abstract. A disorder solution is given for a generalised mixed-spin model on an anisotropic 
Kagome lattice. Because of its lower rotational symmetry, the solution is obtained by 
decimation along four different directions. In the case of a spin-f and spin-1 mixed model, 
the intra-row correlations in both horizontal and vertical directions are zero when a relation 
imposed on the interactions is satisfied. 

1. Introduction 

Very recently a number of papers have appeared that deal with disorder solutions of 
many different kinds of models (Rujan 1984, Baxter 1984, Jaekel and Maillard 1985, 
Wu 1985, Giacomini 1986). These models are known to possess remarkable submani- 
folds in the space of parameters, where the partition function is computable and takes 
a very simple algebraic form (Enting 1977). Disorder solutions provide an important 
insight into the analytical behaviour of the partition function in its anisotropic para- 
meters, Some information in the vicinity of the disorder solution can be obtained 
through a new perturbative expansion (Georges et a1 1986). Moreover, Georges and 
Le Doussal (1987) have recently shown that ( D  + 1)-dimensional equilibrium spin 
models satisfying a ‘disorder condition’ may be equivalent to D-dimensional prob- 
abilistic cellular automata ( PCA), which allows us to provide techniques from the 
equilibrium statistical mechanics of spin models to the study of statistical properties 
of the dynamical behaviour of PCA. 

It is well known that symmetry plays an important role in statistical mechanics, 
especially in critical phenomena. Recently, Tang and Hu (1987a, b)  have considered 
a generalised mixed-spin (GMS)  model which has lower translational symmetry. Its 
phase diagram is described via renormalisation group approximations (Tang and Hu 
1987a). The known exact results include a disorder solution on a checkerboard square 
lattice (Tang and Hu 1987b) and an king transition critical line on honeycomb lattices 
in a parameter subspace (Tang and Hu 1988). 

In this paper, a Kagome lattice G M S  model, which has the same translational 
symmetry as, but lower rotational symmetry than, the pure spin system, is considered. 
Much interest is given to this model in our research because of its plentiful properties 
of symmetry, even in the case of the spin-f king model which has been considered by 
Jaekel and Maillard (1985). In their work, a disorder solution for this spin-f model 
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Figure 1. The anisotropic Kagome lattice G M S  model. The G M S  model consists of spin-f 
and spin-1 Ising objects, which are indicated by circles (0)  and crosses ( x ) ,  respectively. 
Each shaded cell is bordered by two sets of interactions, - I , ,  - I ,  and -I,.  

is obtained by decimation along one direction. Because of the low rotational symmetry 
of the Kagome lattice, a different decimation direction (the direction along which the 
decimation is performed) may lead to a different disorder solution, which is also true 
even in the case of a pure spin-4 Ising model. Therefore, the disorder solution for this 
model should include all the solutions obtained in different decimation directions. 
Along this line, the exact decimation method, as used by Jaekel and Maillard (1985) 
and Wu (2985), is applied to the anisotropic Kagome lattice GMS model. 

The outline of the paper is as follows. The anisotropic Kagome lattice GMS model 
is introduced in 9 2. Section 3 is devoted to results and a discussion is given in § 4. 

2. The model 

In order to examine the influence of symmetry on disorder solutions, we consider a 
generalised mixed-spin (GMS)  model on anisotropic Kagome lattices with the Hamil- 
tonian 

%?{U, S }  = - J1 C (+!SI - Jz C aks, - J3 a g a k  - G Sf ( 1 )  

where U = if and S = 0, * l .  The first three summations are taken over three different 
directions, respectively. This Hamiltonian reduces to the Ising model as G + CO, the 
mixed-spin model as G+O and a site-diluted Ising model as G<O. Even for the 
existence of spin-1, the translational symmetry is sustained, whereas the rotational 
symmetry is lowered. According to the symmetry of the model, we have to consider 
four, i.e. ( 4 1 2 ,  -+), vertical ( y ) ,  (-+, 4 / 2 )  and horizontal (x) decimation direc- 
tions (see figure 1). 

1.1 k.1 1.k I 

3. Results 

In this section, the exact decimation procedure will be carried out for the anisotropic 
Kagome lattice GMS model in four different directions, which leads to four different 
elementary cells shown in figure 2. 
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Figure 2. Elementary cells for the four different decimation directions: ( - ~ 3 / 2 ,  -f) (a) ,  
vertical ( b ) ,  ( - f ,  - d / 2 )  ( c )  and horizontal ( d ) .  The summations are taken over full circles 
(e) and crosses ( x )  only. Spin-4 and spin-1 king objects which are not to be summed 
over are indicated by open circles (0) and crosses surrounded by circles ( O ) ,  respectively. 

Following Jaekel and Maillard (1985), the corresponding criteria in the cases of 
figures 2(a) ,  ( b ) ,  (c) and ( d ) ,  respectively, are 

W ’ ( S , ,  U ; ,  S3,  u i ,  U:) = F ( K ,  L, M,  A’) exp(A*S:) (3 )  
S, ,vi .ai 

1 W ’ ( S , ,  vi, S3,  c;, U;) = F ( K ,  L, M, A’) exp(A*S:) ( 5 )  
ui,Sn.-j 

with Boltzmann weights 

W = e x p [ K S , ( a ; + a j ) + L S , ( ( + S + ~ ; ) +  M(a;v;+v;(+;)+AS:] ( 6 )  

W ‘ = e x p [ K ( S , a ; + S 3 ( + ; ) + L u ; ( S I + S 3 ) +  Ma;(a;+a&)+A’S:] ( 7 )  

where K = f J , /  kT, L = i J z /  kT, M = aJ3 / kT, A = G/ kT, A* = G*/ kT, A’ = GI/ kT and 

If particular boundary conditions, which do not modify the partition function per 
site at the disorder domain in the thermodynamic limit, are introduced on the first 
layer along the decimation direction and periodic boundary conditions are imposed 
in the other direction, the decimation procedures defined by ( 2 ) - ( 5 )  can be iterated 

a: = 2ui = *le  
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until all the spins of the system have been summed over (cf Jaekel and Maillard 1985). 
This leads to the following results for the partition function per site: 

f = ( F ) ” 3  

= (4eM{cosh M t e’ cosh( K + L)[e” cosh( K + L )  +e-M cosh( K - L ) ] } ) ’ I 3  (8) 

which is valid under the constraint 

sinh 2 M  
e -2M cosh2( K - L )  - e2M cosh2( K + L )  

e’ = 

and confined to the regions 

and 

T S  T D  

where TD is the temperature defined by 

cosh( K - L )  eZM = 
cosh( K + L )  

and 

f = ( F ) ‘ / ’  

(9) 

= (4 cosh2 M + 4e”cosh( K + L)[eZM cosh( K + L )  +cosh( K - L ) ]  - sinh 2 M ) )  1’3 

(14) 

which is valid along the trajectory 

sinh( K - L )  
sinh( K + L )  

with any real value of G and confined to the region 

eZM = 

JiJZJ3<0. 

4. Discussion 

It follows from (9), ( l o ) ,  (11) and (13) that G becomes infinite when T =  T,, and 
accordingly the GMS model reduces to a pure spin-f model. After eliminating an infinite 
factor exp(A), we have 

f =[4(cosh2K +cosh2L)]’l3 (17 )  
when 

e 2 M  = cosh( K - L )  
cosh( K + L )  
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which can be shown to be equivalent to Jaekel and  Maillard's equation ( 7 )  with q = 2 
and 

f=( 4 s i n h 2 2 K  ) '  
cosh 2K -cosh 2L 

when 

e i M = )  sinh( K - L) j 
sinh( K + L) ' 

The methods used so far for obtaining disorder solutions rely on the same mechan- 
ism: a certain local decoupling of the degrees of freedom of the model, which results 
in an effective reduction of dimensionality for the lattice system. In our problem, it 
can be expressed more concretely as 

X + K = O  (21) 

where rC is the effective interaction obtained by summing the upper three spins in the 
elementary cell and K is the interaction between the other two spins. In the cases of 
figures 2 ( a )  and ( c ) ,  equation (21) leads to a unique condition on the parameters of 
the mqdel and for figures 2 ( b )  and ( d ) ,  equation (21) can be satisfied only for infinite 
G, which leads to two conditions. 

The conditions (9) and  (15) can be satisfied simultaneously for a spin-; and spin-1 
mixed-spin model (i.e. G = O ) .  In this case, it is easy to show that the intra-row 
correlation is zero in both horizontal and vertical directions. As pointed out by Maillard 
(1986), the disorder temperature corresponds to the temperature where even that 
short-range order vanishes. 
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